QUASI-EINSTEIN CONTACT METRIC MANIFOLDS
نویسندگان
چکیده
منابع مشابه
On quasi Einstein manifolds
The object of the present paper is to study some properties of a quasi Einstein manifold. A non-trivial concrete example of a quasi Einstein manifold is also given.
متن کاملOn K-contact Einstein Manifolds
The object of the present paper is to characterize K-contact Einstein manifolds satisfying the curvature condition R · C = Q(S,C), where C is the conformal curvature tensor and R the Riemannian curvature tensor. Next we study K-contact Einstein manifolds satisfying the curvature conditions C ·S = 0 and S ·C = 0, where S is the Ricci tensor. Finally, we consider K-contact Einstein manifolds sati...
متن کاملEinstein Manifolds and Contact Geometry
We show that every K-contact Einstein manifold is Sasakian-Einstein and discuss several corollaries of this result.
متن کاملSymmetries of Contact Metric Manifolds
We study the Lie algebra of infinitesimal isometries on compact Sasakian and K–contact manifolds. On a Sasakian manifold which is not a space form or 3– Sasakian, every Killing vector field is an infinitesimal automorphism of the Sasakian structure. For a manifold with K–contact structure, we prove that there exists a Killing vector field of constant length which is not an infinitesimal automor...
متن کاملInstitute for Mathematical Physics Einstein Manifolds and Contact Geometry Einstein Manifolds and Contact Geometry
We show that every K-contact Einstein manifold is Sasakian-Einstein and discuss several corollaries of this result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2014
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089514000494